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Abstract 

During a pandemic such as COVID-19, managing public transit efectively becomes a critical 
policy decision. On the one hand, efcient transportation plays a pivotal role in enabling the 
movement of essential workers and keeping the economy moving. On the other hand, public 
transit can be a vector for disease propagation due to travelers’ proximity within shared and 
enclosed spaces. Without strategic preparedness, mass transit facilities are potential hotbeds 
for spreading infectious diseases. Thus, transportation agencies face a complex trade-of 
when developing context-specifc operating strategies for public transit. This work provides 
a network-based analysis framework for understanding this trade-of, as well as tools for 
calculating targeted commute restrictions under diferent policy constraints, e.g., regarding 
public health considerations (limiting infection levels) and economic activity (limiting the 
reduction in travel). The resulting plans ensure that the trafc fow restrictions imposed on 
each route are adaptive to the time-varying epidemic dynamics. A case study based on the 
COVID-19 pandemic reveals that a well-planned subway system in New York City can sustain 
88% of transit fow while reducing the risk of disease transmission by 50% relative to fully-
loaded public transit systems. Transport policy-makers can exploit this optimization-based 
framework to address safety-and-mobility trade-ofs and make proactive transit management 
plans during an epidemic outbreak. 

Keywords: Public transit, spatial compartmental model, safety-and-mobility trade-of 

1. Introduction 

Operating public transit amid post-peak and post-epidemic periods is a double-edged 
sword: on the one hand, it provides basic and low-cost mobility services to those not own-
ing cars or who place environmental concerns at the center of commuting decisions; on the 
other hand, human mobility, especially commuting by mass transit, contributes to the spa-
tial propagation of infectious disease. Policy-makers face this health-and-economic trade-of 
when lifting the restrictions and restarting public transit systems during the unprecedented 
COVID-19 pandemic. There is evidence (van Dorn et al., 2020; Cohen and Kupferschmidt, 
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2020) that the epidemic outbreak had a disproportional impact on mass transit operators 
and passengers compared with other groups of the population. McLaren (2021) analyzed 
census and mortality data from 3140 counties in 2020 and found that the use of public transit 
attributed to the racial disparity in COVID-19 deaths, and the positive efect was evident 
from March to May. In comparison, carpooling also involved sharing a vehicle with other 
commuters for the length of the ride, but it did not help spread the virus. 
Due to safety concerns, many countries have implemented a temporary closure of transit 

systems (Lewnard and Lo, 2020); in some countries, ridership of public transit has dropped 
up to 90% (Amekudzi-Kennedy et al., 2020; DeWeese et al., 2020). While the potential risk 
of epidemic exposure inside subway carriages or buses has been well-recognized (Feng et al., 
2020), there is a lack of scientifc knowledge about the corresponding prevention strategies. 
This work aims to answer a critical question frequently raised by transportation agencies 
and researchers: How to control trafc fows in public transit networks to improve safety 
and preparedness during periods of spreading infection? 
To answer this question, we frst model the spread and mitigation of a particular epidemic 

disease through public transit networks using a metapopulation compartmental model. The 
risk of disease transmission associated with public transit depends on the characteristics of 
the disease and the intervention policies implemented across the entire environment being 
modeled (Figure 1). In particular, we focus on movements between residences and work 
locations.1 We propose a mathematical-programming-based approach for designing targeted 
public transit policies, with the intent of minimizing the public health risk while maximiz-
ing mobility in the context of dynamically evolving epidemics. We show that by applying 
targeted interventions on high-risk transit routes and regions, most inelastic travel demand 
can be satisfed while the spatial propagation of the infectious disease is restrained. 

1.1. Objectives and main contributions 
This work focuses on optimizing the commute networks’ operations under disruptions 

caused by emerging infectious diseases. These disruptions include government regulations 
on the use of transit, abrupt traveling behavior modifcations, and limited access due to 
the workforce shortage during the outbreak of a pandemic. We are specifcally interested in 
controlling the mobility patterns with dual objectives – providing reliable access to public 
transit services while slowing the communicable disease invasion. 
The main contributions of this work are: 

1. Developing an optimization-based analysis by integrating the spatial epidemic model 
and the commute network model. 

2. Providing a forward-backward iterative method to solve the large-scale transit trafc 
control policies and obtain insight for efective interventions. 

3. Investigating the optimal subway route operations plans in Manhattan, New York City 
(NYC) and evaluating the impact on COVID-19 pandemic transmission. 

The method developed in this work can be applied to any infectious disease that can 
be potentially transmitted through public transit services, e.g., risk of aerosol and contact 

1We do so for simplicity of exposition and due to the detailed movement data available in this context. 
The model presented can be easily generalized to include other movements. 
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Figure 1: Illustration of transmission of infectious disease in public transit; Susceptible population is under 
the risk of infection in public-transit commuting trips and contacts in home and work regions. 

transmissions inside vehicles. The spatial epidemic model on the commute networks captures 
the infuence of two most commonly implemented regulations: quarantine policies (popu-
lation with severe symptoms is forced to stay at home) and social-distancing policies on 
public transit. Our work is one of the frst attempts to investigate the transit trafc control 
policies with monitoring feedback considering the combined efects of repetitive commuting 
patterns and epidemic dynamics. The model developed in this work requires access to only 
publicly-available data and thus can be easily adopted by local transportation agencies to 
make data-driven responsiveness and preparedness plans. Therefore, the model is suitable 
for facilitating the healthcare measures to contain infectious diseases. 

1.2. Related work 

Metapopulation model for transportation networks. There is a resurgence of inter-
est in modeling the disease contagion processes associated with recurring commuting trips. 
The development of advanced metapopulation network models coincides with the pattern of 
increasingly frequent epidemics in recent years. Keeling et al. (2010) initiated the stream 
of network models for the spatial spreading of infectious disease in the commuter-to-work 
networks. They addressed that the infection dynamics in the recurrent commute networks 
were signifcantly diferent from their counterparts in the kernel and random mobility net-
works. Balcan and Vespignani (2011) drew a similar conclusion, whereas the difusion rate 
and recurrent commuting rate jointly determine whether or not the global spreading of the 
infectious disease occurs. Bichara and Iggidr (2018) analyzed how the heterogeneous groups, 
patches, and mobility patterns afect the disease prevalence by a multi-group compartmental 
model. Since the individual’s commuting patterns are no longer random, Yashima and Sasaki 
(2016) found that the commute networks’ topological characteristics such as the networks’ 
degree distribution become relevant. When the degree of networks follows a heavy-tailed 
distribution, the disease invasion threshold decreases signifcantly. Hence, the epidemic is 
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not preventable by merely random interventions such as quarantine and vaccination. Ding 
et al. (2021) proposed a combinatorial optimization model for the Transportation Lock-
down and Quarantine Problem within a network compartment model. They proposed an 
efective-distance-based heuristic method to solve the best measures due to the intractabil-
ity of exact methods. Therefore, studying the relationship between commute networks and 
disease dynamics is of interest to epidemiology and transportation research. 

Impact of COVID-19 pandemic on public transit. In an attempt to identify the 
risk of taking public transit during the outbreak of COVID-19, an infectious disease with 
millions of confrmed cases globally, Mo et al. (2021) proposed an individual encounter 
model that characterizes the transmission of the disease on public transportation facilities. 
As an agent-based model, the encounter model captures the probability of contact between 
individuals and thus evaluates the risk of transmitting disease from an infectious person 
to a susceptible one. They calibrated the model using the smart card data from Singapore. 
Using a similar approach, Qian et al. (2021) conducted a cross-city comparison of the contact 
networks using the smart card data in China. They constructed a universal generation 
model to explain the correlation between the metro contact network’s properties and the risk 
level of transmissible diseases. Lu et al. (2021) created a Transport Proximity Deep Neural 
Network Weighted Regression (TPDNNWR) model to predict the spatial propagation of the 
COVID-19 at the city level in China. This comparative study demonstrated that the deep-
learning-based model has higher prediction accuracy than other parametric regression models 
such as ordinary linear regression and geographically weighted regression models. Chang 
et al. (2020) combined the metapopulation model and commute networks to explain why the 
infection rates among disadvantaged groups were higher than the rest. Compared to agent-
based models such as the individual encounter model, metapopulation models require access 
to demographic survey data that is normally publicly available. Hu et al. (2021) created an 
open-source platform to provide daily human movement information based on mobile device 
location data. They developed a generalized additive mixed model to aggregate population-
level mobility patterns and separate policy efects on human mobility (e.g., social-distancing) 
from other confounding efects. 
The efectiveness of social-distancing policies in public transit systems has been evalu-

ated empirically. Kamga and Eickemeyer (2021) conducted a comparing study on deploying 
various social-distancing policies in the U.S. and Canada during the eight-month of the 
COVID-19 pandemic. They included the most common transit modes, including trains, 
subway cars, buses, and standard policies such as adding train cars and rear door board-
ing. Kamga et al. (2021) used simulations to evaluate how much resources are required to 
enforce the six-foot minimum distance in NYC’s subway systems. Their results revealed 
that 117 trains per hour were beyond the current operational capacities. They proposed an 
alternative and more realistic policy that enforced a three-foot minimum distance plus mask-
wearing. Hensher et al. (2022) studied the covid-related work-from-home trends by ftting 
a mixed-logit commuter mode choice model. They conducted surveys in major cities across 
Australia to calibrate a new strategic transport model that considers the socioeconomic and 
geographical segments related to the working-from-home population. 

Modeling transit as contact networks and compartmental models. Some prior 
works use contact networks to model the transmission of an epidemic such as COVID-19 at 
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an individual agent level by utilizing social activity data. In this approach, detailed commuter 
movement data is required for model ftting—something that is not typically available in the 
early stages of an epidemic and hard to obtain in general. More importantly, these models 
only studied infectious disease spreading in transit systems, ignoring the interactions be-
tween commuters and other populations at home or in the workplace. Considering the short 
commuting period compared with other activities during the day, separating commuters’ 
behavior from other populations fails to capture the long-term implications of controlling 
trafc patterns and underestimates the value of public transit intervention policies. 
Previous research mainly investigated the descriptive and predictive models, whereas 

this work aims to develop a prescriptive model for transit networks. The remaining paper is 
organized as follows. Section 2 blends the advances in the metapopulation epidemic models 
with the network fortifcation models. The resulting optimization facilitate the policy-making 
in transportation that balances the need to return to normal activities and prevent public 
health hazards. Section 3 derives general rules for managing public transit under public 
health measures. Section 4 implements this model in a case study of New York City’s subway 
systems and tests the public transit control policy’s impact on spreading the contagious 
disease. Section 5 draws the fnal conclusion. 

2. Methodology 

2.1. Metapopulation model for commute networks 

This work focuses on the recurring commuting trips, which account for 79% of all transit 
trips in the United States (including work and school trips) (Lee and Hickman, 2014). Com-
muting remains the primary demand for traveling during the epidemic period and revives 
rapidly in reopening the economy (Wang et al., 2021; Hu et al., 2020). 
The commute mobility patterns are mainly modeled by the following three approaches. 

First, we may model the movement in urban commute networks on the individual level. 
Reconstructing the contact networks requires access to massive human motion trajectory 
data notwithstanding (Mo et al., 2021). Tracking passengers’ use of public transit and 
alternative modes is costly. Thus, any control policies derived from the contact networks are 
slow to implement, occasionally impossible due to privacy concerns, and biased due to the 
limited electronic device users. 
The second approach for modeling traveling patterns is random mobility models. These 

models assume that passengers follow certain movement distributions, such as random walks 
over the network. Nevertheless, prior work has revealed that recurring commute trips (i.e., 
individuals take the fxed routes back and forth) signifcantly impact the disease dynamics 
and the derived control policies (Keeling et al., 2010). Therefore, random mobility models 
are unsuitable for public transit applications and developing safe and efective transit control 
policies based on movement data. 
A third option that is promising is the use of metapopulation models. First, conventional 

transportation planning uses basic geography units such as trafc analysis zones (TAZ) or 
census tracts, so considerable resources and datasets are already in local transportation agen-
cies’ hands. A vast stream of literature has developed fundamental methods for generating 
and analyzing these grid-based models. Second, leveraging the richness of urban planning 
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and transportation models associated with these basic geography units, researchers can ex-
plore the connections to commuters’ demographic features to develop context-specifc plans 
in preventing epidemics. For example, how to connect the use of public transport to the 
racial disparities (McLaren, 2021). Finally, epidemic response policies and guidance are of-
ten made on a macroscopic network level. In what follows, we introduce how to construct 
a metapopulation model for a public transit system (called “commute network” throughout 
this paper). All the notation used in the paper is summarized in Table A.2 in Appendix A. 
During the day, each resident is in one of three statuses: at home (“H”), at work (“W ”), 

or commuting (“C”). A commute network integrates two separate systems: a home-and-
work network GHW = (VHW , EHW ) consisting of basic geography units such as census tracts 
or TAZs, and public transit networks GC = (VC , EC ) serving daily commute between these 
home-and-work regions (Figure 2). 

(a) Original geographical map with transit (b) Commute network 

Figure 2: Construct commute network by integrating home-and-work network and public transit network 

1. Home-and-work network GHW : 
(a) Residents live in a closed complete network with a fxed population Nv ∈ Z+ for 

each v ∈ VHW . We denote N = [Nv]v∈VHW whenever there is no possibility of 
confusion. 

(b) Each region v ∈ VHW has a set of neighboring outfow regions N +(v) := {u ∈ 
VHW : (v, u) ∈ EHW } and a set of infow regions N −(v) := {u ∈ VHW : (u, v) ∈ 
EHW }. The fraction of residents at v travels toPu ∈ N +(v) is rvu ∈ [0, 1]. Flow 
conservation ensures that the fractions satisfy = 1 for all v ∈ VHW . u∈N +(v) rvu 

2. Public transit network GC : 
(a) VC represents a set of public transit routes available to commuters. Each route 

may contain a single public transit line or transfers between multiple modes or 
lines. 

(b) Expanding V = VHW ∪ VC such that edges EC connect each region v ∈ VHW to 
accessible routes w ∈ VC . 

(c) We defne the outfow and infow to public transit as C+(v) and C−(v), respectively, 
upon edges EC . The fraction of population living in v ∈ VHW takes the route 
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P 
w ∈ VC is pvw ∈ [0, 1]. The summation of fractions pvu ≤ 1 holds for all u∈C+(v) 

v ∈ V if C+(v) ̸= ∅ because residents can choose other modes of transport such 
as walking or driving. 

3. Efective population: P 
(a) We defne the efective work-time population as N e(t) :=Pv u∈N −(v) ruvNu. 
(b) The efective commuting population as Ce(t) := (t) by assumingv w∈C−(v) pwvNv 

that commuters take the same route back and forth so that pvw = pwv for any 
w ∈ C−(v). 

(c) Let ρN and ρC be the trafc fow fraction matrix ruv for the home-and-work and 
pvw for the the public transit network, respectively. We can rewrite the efective 
population as N e(t) = ρ⊺ 

N N(t) and Ce(t) = ρ⊺ 
C N(t). 

We call the integration of the two networks a commute network G = (V , E). The route is 
represented as a vertex in commute networks because contagious diseases such as COVID-19 
can spread via respiratory, aerosol, or contact transmission in vehicles. Experiments have 
shown that the infectious virus particles can be detected from surfaces for up to 24 hours 
or even three days (Van Doremalen et al., 2020; Chin et al., 2020). These results imply 
that travelers may be exposed to the disease in a carriage carrying infectious passengers at 
diferent times. Since the risk of being exposed is possibly exceeding direct personal contact, 
the metapopulation model has captured the average efect of the infection in the daily use 
of transit service. 
A common concern is that the traveling behavior may shift away from public transit 

systems because of the epidemic outbreak (Wang et al., 2021), and the government’s dis-
ease control plans, such as reducing the public transit service time or alternative seating, 
exacerbate this trend. In addition, travelers may switch to a diferent mode, take a diferent 
route, or follow diferent schedules to avoid contacting potentially infectious population. The 
travel rate pvu for each v ∈ VHW and u ∈ C+ implicitly incorporates a mix of route and mode 
choices. Since factors such as traveling time and trip purpose still play a central role in these 
distributions during an epidemic, this work uses fxed fractions pvu throughout the analysis. 
Estimating travel behavior changes requires new empirical research using post-epidemic data 
and is beyond the scope of this work. 

2.2. Spatial epidemic model 

Spatial epidemic models are widely used to model the spread of infectious disease and 
quantify workable disease control strategies. Many infectious diseases have an extended 
period from infection to onset of symptoms, which causes a signifcant challenge in addressing 
control strategies. For example, the respiratory symptoms of COVID-19 appear in as few as 
two days or as long as 14 days after exposure (Chin et al., 2020). To capture this feature, 
we use a standard metapopulation SEIR epidemic model that divide the population at time 
t ∈ R+ at each vertex, Nv(t), into four groups, susceptible, exposed, infectious, and recovered 
as Sv(t), Ev(t), Iv(t), and Rv(t), respectively; i.e., Nv(t) = Sv(t) + Ev(t) + Iv(t) + Rv(t) for 
all v ∈ VHW . In addition to these compartments, we track the proportion of cases that are 
symptomatic, which we denote as α(t). In each period, the symptomatic infectious population 
Qv(t) = α(t)Iv(t) is assumed to be quarantined in the home region v. The quarantined 
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Figure 3: SEIR model on commute networks under quarantine policies. 

population is isolated from the rest while the non-symptomatic individuals, (1 − α(t))Iv(t), 
continue to move in commute networks. The standard SEIR model is presented in Figure 3. 
The transmission of the disease is captured by three parameters in the SEIR model: the 

contact rate βv (the average number of contacts per person per time), the mean latent period 
1/δ, and the recovering rate γ. The contact rate βv is vertex-dependent because diferent 
regions v ∈ VHW and public transit lines v ∈ VC may employ diferent risk mitigation 
measures. The node-specifc contact rates can incorporate the following factors in the spatial 
epidemic model: (a) social-distancing policies in transit systems and other measures in 
workplaces; (b) personal contact risk due to transit travel (the risk factor can be mode 
specifc); (c) varying contact rates due to disease events and the at-risk population’s behavior 
changes. In particular, each combination of transit modes corresponds to a diferent node in 
VC . 
The Spatial SEIR model expands the aggregate SEIR model to commute networks using a 

graph-representation in Mori et al. (2020). The dynamics of the susceptible population, i.e., 
the rate of becoming exposed once having infectious contact with the infected population, 
is described as follows:  � � XdSv(t) (1 − α(t))βvIv(t) (1 − α(t))rvuβu[ρN I(t)]u 

= − pH Sv(t) − pW Sv(t)   
dt Nv [ρN N ]u 

u∈N +(v) 

(1)  X (1 − α(t))pvwβw[ρC I(t)]w− pC Sv(t)   ,
[ρC N ]w 

w∈C+(v) 

where pH , pC and pW represent the fraction of time during the day involving staying in the 
home region, commuting, and in the workplace, respectively. These three terms calculate 
the probability of being exposed in the home region, work region, and while taking public 
transit, respectively. As in the standard SEIR model, (1 − α(t)) percentage of the infected 
population is isolated at their home region. Note that 

P 
[ρ⊺ N ]v ≤ 

P 
Nv as we v∈VHW C v∈VHW 

do not assume that every trip (u, v) is carried by public transit, and choosing other modes 
such as driving bear no risk of contagion in commuting. 
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The Spatial SEIR model on commute networks can be written in a compact matrix form: 

∂St ⊺ ⊺ ⊺ = −pH S IH − pW S IW − pC S IC , (2)t t t t t t∂t 
∂Et ∂St 1 

= − − Et,
∂t ∂t δ 
∂It 1 

= Et − γIt
∂t δ 
∂Rt 

= γIt,
∂t 

The Spatial SEIR model guarantees that dNv/dt = 0 for each v ∈ VHW and t ∈ R+ . 
These population vectors are given by: 

St = [Sv(t)]
⊺ Et = [Ev(t)]

⊺ 
v∈V , v∈V , 

It = [Iv(t)]
⊺ Rt = [Rv(t)]

⊺ 
v∈V , v∈V , 

Iv (t) ⊺IH = [βv ] t Nv v∈VP (1−α(t))[ρN I(t)]u ⊺IW 
t = [ u∈N +(v) rvuβu [ρN N ]u 

]v∈V . P (1−α(t))[ρC I(t)]w ⊺IC = [ βw ]t w∈C+(v) pvw [ρC N ]w v∈V 

We can obtain the basic reproduction number R0 from the epidemic dynamics, which is a 
critical measurement to guide disease control. R0 is the average number of secondary cases 
produced by one infected individual introduced into a completely susceptible population 
(Yashima and Sasaki, 2016). Emerging infectious diseases such as COVID-19 spread more 
rapidly in a region if R0 is large. In addition, R0 also determines what proportion of the 
population should be immunized or vaccinated to eradicate the infectious disease. 
The basic reproduction number R0 is calculated by the dominant eigenvalue of the next 

∈ R|VHW |×|VHW |generation matrix (NGM) G0 . The epidemic dynamics described by eq.(2) 
can be split into two parts (a) the rate of appearance of new infections in compartments 
denoted as a matrix F , and (b) the rate of transfer into compartments denoted as a matrix 
V . NGM is defned by G0 = FV −1 . The derivation of NGM for the Spatial SEIR model 
is a tedious but crucial task for the remainder of this paper. We describe how to compute 
the Jacobian matrix of the equation system eq.(2) and the explicit expression of NGM in 
Appendix B. 
The time-varying measures of the disease reproduction rate in a partially susceptible 

population is measured by the efective reproduction number Rt, which is the dominant 
eigenvalue of efective NGM Gt at time t ∈ R+. We can take a shortcut by obtaining 
the expression for changes in Rt as a result of parameter changes in the epidemic model. 
For a fxed time t, let ζ and η be the eigenvectors associated with Rt in the eigenvector 
decomposition of Gt, i.e., ζ⊺Gt = Rtζ

⊺, Gtη = Rtη, and normalized such that ζ⊺η = 1. If 
we vary the Spatial SEIR model parameters by controlling the transit ridership through the 
planning horizon, we can evaluate the change of the reproduction number as: 

ζ⊺∆Gtη 
∆Rt = . (3)

ζ⊺η 
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2.3. Optimizing transit fows with disease reproduction constraints 

The control for this public transit system is to curb trafc fows on particular routes to 
balance the increasing commuting demand and the hastening spreading of infectious diseases. 
For each u ∈ VHW , w ∈ VC , we let xuw ∈ [0, 1] denote the proportion of subpopulation allowed 
to use this public transit route. Such a control can be realized by reducing service frequency 
on a particular route, imposing capacity regulations inside public transit vehicles, or limiting 
capacity at these transit stops. In the fxed fow control case, x is fxed at time t = 0; in the 
extended version, the policy-maker adaptively changes the guidance for using public transit 
x(t) after observing that R0 hits certain thresholds over the planning horizon t ∈ [0, T ]. 

2.3.1. Fixed fow control policy 
If the transportation agency aims to manage public transit with limited information on 

the disease, the following static control policies are easy-to-implement. 

Defnition 1. A fxed fow control policy x ∈ [0, 1]|VHW |×|VC | is the proportion of fows allowed 
to use public transit over time horizon [0, T ] on each route (v, w), v ∈ VHW , w ∈ VC . 

Our primary goal is to set an initial control plan throughout [0, T ] to maximize the transit 
network’s throughput while protecting the public from the risk of exposure to infectious 
diseases. We can formulate the problem as follows: X 

maximizex xvwpvwNv (4) 
(v,w):v∈VHW ,w∈VC 

s.t. ∆R0(x) ≤ κ(R0(1) − R0(0)) 

0 ≤ xvw ≤ 1, ∀v ∈ VHW , ∀w ∈ VC . 

The right-hand side of the disease reproduction constraint in eq.(4) means that the change 
of basic reproduction number due to opening public transit is within a tolerance κ ∈ [0, 1] 
from the worst case. The worst case is measured by R0 with the full reopening of transit 
(x = 1 called the “control-free” case) and the best case is with no opening of transit at all 
(x = 0 called the “shutdown” case). Lemma 2 gives a more rigorous proof. Despite the fact 
that this constraint can be explicitly calculated by eq.(3), we use this relative measure of 
the disease spreading because of the instability of input data. The exact values of NGM are 
sensitive to input data, such as the epidemic model’s parameters and route choice estimation 
in the metapopulation model. In contrast, the relative value of R0(1) − R0(0) is a stable 
measure, and the derived control policy is more robust to the modeling errors. 
The explicit expressions of constraints are derived from the NGM in Appendix B. As-

suming a constant quarantine ratio of α, the NGM under control policy x at time t, Gt(x), 
can be computed from the production of transmission and transition matrices. For each 
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tuple of u, v ∈ VHW , we have: h X ⊺1 (t) (1 − α)Sv(t)[ρSv 2 N N ]u[Gt(x)]vv = pH βv(1 − α) + pW rvuβu ⊺ )2 
+ 

γ Nv ([ρN N ]u 
u∈N +(v) X 

2 2 (1 − α)Sv(t)[ρC (x)
⊺N ]w 

i 
pC x p βw ,vw vw )2([ρC (x)⊺N ]w 

w∈C+(v)h X ⊺1 (1 − α)Sv(t)[ρN N ]w[Gt(x)]vu = pW ruwrvwβw ⊺ + 
γ ([ρ )2 

N N ]w 
w∈N +(u)∩N +(v) X (1 − α)Sv(t)[ρC (x)

⊺N ]w 
i 

pC xuwpuwxvwpvwβw . 
([ρC (x)⊺N ]w)2 

w∈C+(u)∩C+(v) 

With fxed x over the planning horizon t ∈ [0, T ], the disease reproduction constraint in 
eq.(4) is given by: 

ζ⊺(G0(x) − G0(0))η ≤ (R0(1) − R0(0))ζ
⊺η, (5) 

where [G0(x) − G0(0)]vu =  P SvpC x2 p2 βw(1 − α) , v = u vw vw 
w∈C+(v) [ρC (x)⊺N ]w pC 

P 
xuwpuwxvwpvwβw(1 − α) 

Sv 
, v ̸= u. 

w∈C+(u)∩C+(v) [ρC (x)⊺N ]w 

Given controls x, there exists an obvious disease-free equilibrium Sv(0) = Nv and Iv(0) = 
0 for all v ∈ V at t = 0. We can further simplify eq.(5) as:  P x2 p2 βw 

vw vwpC (1 − α)Nv , v = u 
w∈C+(v) [ρC (x)⊺N ]w

[G(x) − G(0)]vu = (6)P xuwpuwxvwpvwβwpC (1 − α)Nv , v ̸= u. 
w∈C+(u)∩C+(v) [ρC (x)⊺N ]w 

It is important to address that the optimal transit control policy computed above has 
limitations for the following reasons. First, we assume that commuters’ choice of alternative 
modes of transport (e.g., driving, walking, ride-hailing) is risk-free from contagious disease 
throughout the analysis. Potential commuters disregard the travel plans if no option is avail-
able. Second, the control plan x is implemented at t = 0 and remains the same throughout 
the planning horizon. This static policy is suboptimal in the face of infectious disease’s 
evolving conditions. We propose a more general control policy in the next section. 

2.3.2. Flow control with monitoring feedback 
In the course of disease preparedness plans, transportation planning authorities need to 

make sequential decisions during [0, T ] when there is an evolving situation with regards to 
an infectious disease. 

Defnition 2. A fow control policy with monitoring feedback x(τ) ∈ [0, 1]|VHW |×|VC | is the 
proportion of fows allowed to use public transit at time τ ∈ [0, T ] on each route (v, w), v ∈ 
VHW , w ∈ VC . 
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Since the basic reproduction number Rt(x(t)) represents the expected future infections 
after adopting the public transit control x(t), we intend to design a control policy adaptive 
to the progress of the infectious disease. The optimal control policy is derived by solving the 
following extension of eq.(4):X X 

maximize xvw(τ)pvwNv · ∆τ 
{x(τ )}τ ∈[T ] 

τ∈T (v,w):v∈VHW ,w∈VCh i 

(7) 

s.t. ∆Rτ (x(τ)) ≤ κRτ (0),Rτ (1)(τ) Rτ (1) − Rτ (0) , ∀τ ∈ T , 

0 ≤ xvw ≤ 1, ∀v ∈ VHW , ∀w ∈ VC . 

The objective function is the cumulative network throughput over t ∈ [0, T ]. In the 
transition from the widespread of the infectious disease to reopening of the economy, the 
policy-maker prefers to set a series of thresholds of κ with regard to Rt and wants to determine 
corresponding transit control policies at periods T = {0, τ1, . . . , T }. This corresponds to the 
public transit operator’s intention to lift the safety measures after the spreading of the 
disease has slowed down. The disease reproduction constraint guarantees that this sequence 
of health measures regarding Rτ is preserved at time τ ∈ T , and each control x(τ) persists 
for ∆τ periods. As a result, this constraint is adaptive to the impact of transit control policy 
up to time τ . Note that κRt(0),Rt(1)(t) is dependent on the values realized at period t. We 
use the fxed control policy as a starting point for the multistage control with monitoring 
feedback in Algorithm 1. 

Algorithm 1 Public transit fow control with monitoring feedback 

Initial SEIR model S0, E0, I0, R0, population N , and network fow r over the commute 
network. 
Solve fxed control problem x̂ and set the optimal control x(τ ) ← x̂ for all τ ∈ T . 
while t ≤ T do 
x(τ) = x̂ for τ < t 
Let t ← t +∆t: 
· Forward step: Simulate spatial SEIR model and obtain St and I t. 
· Backward step: Solve the subproblems of optimization in eq.(7) with T = [t, T ] to 

obtain the optimal control x ∗(τ), τ ≥ t and optimal value OP T (t). 
Ensure: ∆Rτ (x) ≤ κ(τ)(Rτ (1) − Rτ (0)) for all τ ≥ t 
Update control by x(t) ← x ∗(t) 
Update the objective value Obj ← Obj(t) 

end while 
return x(t) for t ∈ T and the corresponding optimal value Obj. 

Solving control at t ∈ [0, T ] is more computationally challenging than the fxed fow policy 
due to the confounding simulation-and-optimization issue. Given policy x(τ), simulating the 
spatial SEIR model and computing the trajectory of disease outbreak following a given transit 
fow control policy is time-consuming. The workload grows exponentially when the length 
of Rt threshold list increase. This imposes a need to reduce the enumeration of controls 
by separating the simulation and optimization compounds using the following procedure in 
Algorithm 1. 
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We initialize the algorithm with the optimal fxed control policy. Then, in each backward 
step, we update the control policy after the current period and simulate the epidemic dy-
namics up to the current period. This procedure is valid because Rt is a long-term measure 
for the outbreak of contagious disease under prior controls. Given a sequence of controls 
along T , the disease reproduction constraints have a knapsack structure, and the objective 
function is a linear combination of realized network throughput. Nevertheless, the proce-
dure is suboptimal because we do not enumerate all possible states of St and I t as evaluating 
each policy is costly. Since the disease reproduction constraints in optimization eq.(4) and 
eq.(7) are non-convex and the dimensions of x ∈ R|VHW |×|VC | are large, the intent is to fnd 
time-varying transit fow controls that obtain a local maximum within a small number of 
iterations. Since the fxed fow control policy is a special case of the multi-stage policy with 
monitoring feedback by setting T = {0, T } and x(τ) = x, this derived policy is more efec-
tive than the policies in eq.(4). On the contrary, the fxed policy is simpler to calculate and 
implement. 
In practice, we can integrate the sequential data collection into the aforementioned anal-

ysis as follows: 

1. At each period τ ∈ T, the observed infectious statistics is used to calibrated the 
epidemic model (St, Et, I t, Rt). 

2. If interventions starts in the middle of disease outbreak at period t̃  and controls were 
not available in the early stage, we set x = 1 for periods [0, t̃] and resolve the control 
problem with monitoring feedback for periods [t̃, T ]. 

The time complexity of the fxed fow control problem depends on the particular algorithm 
for the nonlinear optimization. Since we use the trust-region method in this work, assuming a 
threshold value of ϵg on the gradient, the upper bound on the maximum number of iterations 
is O(ϵ2 

g) (Curtis et al., 2018). The time complexity analysis of algorithms for fow control 
with monitoring feedback is not considered for the following reasons. The iterative method in 
Algorithm 1 requires solving a system of ODEs and computing eigenvalues repeatedly; thus, 
there is no explicit form of the inequalities involving Rτ . Furthermore, the primary objective 
of these algorithms is to provide policy implications at the early stage of pandemics, so we 
believe that the computational runtime (within reason) is not a major concern. 

3. General rules for public transit control policy 

This section specifes the existence conditions for optimal control and highlights the 
special structure and general rules for the optimal transit fow control policies. For ease of 
analysis, we study the fully connected commute networks where each home region is reachable 
from other work regions, and each commute region in VC connects to all regions in VHW . 
This connectivity assumption does not lose generality because we can model inaccessible 
routes by enforcing zero fow. The expanded network (V , E) based on transit route is not 
fully connected as not each pair routes are connected. The following lemma provides the 
existence conditions for optimal fxed control policy. 

Lemma 1. If the operator uses a global proportional control on public transit fow, i.e., xvw 

is a constant for all v ∈ VHW and w ∈ VC , the change of basic reproduction number is 
proportional to the control-free case with the same constant. 
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Proof. Let set xvw = σ for all v ∈ VHW and w ∈ VC , which means that we allow a constant 
ratio of residents to use public transit on each route. We have ρC (x) = σρC (1), and hence 
ρC (x)

⊺N = σρC (1)
⊺N and xvw = 1 . Since xvw appear in each entry of

[ρC (x)⊺N ]w [ρC (1)⊺N ]w [ρC (x)⊺N ]w 

eq.(6), we have σ[G(1) − G(0)] = G(x) − G(0) and σ[R0(1) − R0(0)] = R0(x) − R0(0). 

It is worth noting that this lemma is true because we assume that people have access 
to alternative modes for commuting. Lemma 1 is an important building block for solving 
optimization in eq.(4) and eq.(7) because it means that, for any exogenous κ, we can set 
x = κ to satisfy the constraints. In other words, the feasible set of the optimization problem 
is nonempty. 

Defnition 3. A control policy x is more restrained than x ′ if: 

1. xvw ≤ xvw 
′ for all v ∈ VHW and w ∈ VC and there exists edges such that xvw < xvw 

′ . 
2. Each pair of xvw > 0, xuw > 0 has dominating marginal efect on the controlled routes 

′ ′ x x ≥ [ρC (x ′ )⊺N ]wvw uw(v, w) and (u, w) with regard to the efective population, i.e., . 
xvwxuw [ρC (x)⊺N ]w 

We then have the following lemma: 

Lemma 2 (Monotonicity). If a public transit control policy x is more restrained than x ′ , 
then R0(x) < R0(x ′ ). 

Proof. Without loss of generality, we assume the NGM associated with x and x ′ both have 
linearly independent eigenvectors. NGM is nonnegative real-valued. We let the two NGM 
be G := Gt(x) and G ′ := Gt(x ′ ). The diference G ′ − G in each entry is:  h ′2 2 iP x x 2 vw vw(1 − α)NvpC βwp − , u = v w∈C+ vw [ρC (x ′)⊺N ]w [ρC (x)⊺N ]wh ′ ′ iP xvwxuw xvwxuw(1 − α)NvpC w∈C+ βwpvwpuw − , u ̸= v. 

[ρC (x ′)⊺N ]w [ρC (x)⊺N ]w 

Let x ′ = x + σ. For an arbitrary w ∈ VC , we can plug x ′ into G ′ − G so we can represent 
the NGMs as G ′ = G + σ ′ G with a relatively small perturbation σ ′ G. We can observe that, 
if the conditions of restrained controls are satisfed, then each term above is nonnegative. 
Note that σ ′ G ≥ 0 is a function of σ and x. According to the matrix perturbation theory 
(Bhatia, 2007), we have λ ′ i = λi + ηi 

⊺σ ′ Gη for each eigenvalue λi. By defnition, R0 is the 
largest eigenvalue of NGM and we conclude that R0(x ′ ) > R0(x). 

Remark 1. Lemma 2 indicates that reducing the trafc fow on a particular public transit 
route does not necessarily reduce R0(x). 

This remark emphasizes the importance of solving a global optimization for transit fow 
control to slow down the spreading of the infectious disease. Lemma 2 is not true if only 
condition 1 of restrained control holds. A counterexample is as follows. Instead of computing 
σ ′ G, we only need to show that, for any given x and arbitrary u ∈ VHW , v ∈ VHW , we have 

(xvw + σvw)(xuw + σuw) xvwxuw
[σ ′ G]vu = − . 

[ρC (x)⊺N + ρC (σ)⊺N ]w [ρC (x)⊺N ]w 
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We can easily fnd σvw > 0, σuw > 0 such that [σ ′ G]vu < 0 by having a third vertex v ′ 

′with Nv ′ σv w ≫ σvw + σuw. Hence R0(x) increases with x. The optimization problem eq.(4) 
is thus non-trivial because we cannot use gradient-based search method or split the problem 
by column decomposition. 

3.1. Properties of the optimal transit fow control 

A disease-free equilibrium(DFE) of the Spatial SEIR model is obtained by setting I t = 
0 and St = N . At this equilibrium, the expressions for G and R0(x) simplify dramatically, 
and can be used to obtain interpretable bounds on R0(x) and ∆R0(x). The asymmetry 
between the home-and-work network and commute network motivates the derivation of the 
following general rules for obtaining upper-bounds on the public transit operations. These 
bounds are used to propose an efcient heuristic for the fxed fow control problem in eq.(4). 

First, we examine the behavior of R0(x). 

Theorem 1. At the disease free equilibrium, with intervention x, we have   X X1 − α 
R0(x) ≤ max pH βv + pW rvwβw + pC xvwpvwβw  . (8)

γ v∈VHW 
w∈N +(v) w∈C+(v) 

Proof. Since R0(x) is the spectral radius of G(x), we have R0(x) ≤ ∥G(x)∥ for any induced 
matrix norm. Choosing the ℓ1 norm, we have 

nX 
R0(x) ≤ ∥G0∥ℓ1 = max [G0(x)]uv. 

v∈VHW ∪VC 
u=1 

Computing the sum of the entries for each column v of G0(x), we obtain 

X XXn 
pH (1 − α) pW (1 − α) 

n n 
Nu

[G0(x)]uv = βv + ruwrvwβw ⊺γ γ [ρN N ]w u=1 u=1 w=1 XXpC (1 − α) 
n m 

Nu 
+ xuwpuwxvwpvwβw

γ [ρC (x)⊺N ]w u=1 w=1 X XpH (1 − α) pW (1 − α) 
n 

pC (1 − α) 
m 

= βv + rvwβw + xvwpvwβw. 
γ γ γ 

w=1 w=1 

Taking the maximum over v gives the desired expression. 

Remark 2. This bound in eq.(8) can be further simplifed to � � 
(1 − α) maxv∈VHW ∪VC βv

R0(x) ≤ pH + pW + pC max xvw ,
γ v,w 

which makes clear the relationship to R0 in the single population model, which would be given 
by (1−α)β .

γ 
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In the absence of the transport network, a simple upper bound for R0(x) would be given 
by the maximum R0 value for a particular vertex. Based on the above results, we can see 
that introducing the commute network allows for further refnement of such an upper bound 
via the control of public transportation fows. Furthermore, the coupling between the home-
work network and the transportation network means that minimizing such an upper bound 
is not as simple as reducing capacity on the route with the highest fow rate. Instead, it is 
necessary to account for fow and transmission rates together when determining the routes 
with the largest impact on the spread of the virus. 
Beyond bounding the value of R0(x) for changing transport fows, we can also examine 

∆R0(x), which is serving as the constraint in the transport control problem. The following 
theorem provides bounds on the change in R0(x) that can be achieved simply by controlling 
x: 

Theorem 2. Assume we have a policy x that is more restrained than having no intervention. 
Then at the disease free equilibrium ∆R0(x) = R0(1) − R0(x) satisfes � � XpC (1 − α)

0 ≤ ∆R0(x) ≤ ∥ξ∥ℓ1 ∥η∥ℓ1 max pvwβw(1 − xvw),
γ v∈VHW 

w∈C+(v) 

where ξ and η are the left and right eigenvectors of G0(1) normalized such that ξ⊺η = 1. 

Proof. The inequality 0 ≤ ∆R0(x) follows from Lemma 2. Taking norms on both sides of 
eq.(3) gives 

|∆R0(x)| ≤ ∥ξ∥∥η∥∥∆G0(x)∥ 

for any induced matrix norm. Again choosing ℓ1 , we have 

nX 
∥∆G0(x)∥ℓ1 = max [∆G0(x)]uv 

v∈VHW 
u=1 

m �P n P n �XpC (1 − α) u=1 puwNu xvw u=1 xuwpuwNu 
= max pvwβw − 

γ v∈VHW [ρC (1)⊺N ]w [ρC (x)⊺N ]w w=1 XpC (1 − α) 
m 

= max pvwβw (1 − xvw) ,
γ v∈VHW 

w=1 

which gives the result. Note that each term in the sum is positive because of the defnition 
of restrained policies. 

In this result, the eigenvectors ξ and η encode the impact of network structure on the 
spread of disease, while the maximum over v accounts for worst-case transmission rates. 
Again, the coupling between disease transmission rates and public transportation fow rates 
means that simply restricting fow on the busiest lines is not guaranteed to have the largest 
impact on R0(x). 
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3.2. Heuristic method for transit fow control 
With the properties of the system dynamics under transit fow control policies above, we 

frst use these bounds to characterize potentially optimal policies: 

Proposition 1. To maximize the upper bound (maximize the potential impact on R0) we 
should choose a policy x from X = [0, 1]|E| such that ( 

m 
)X 

x = arg max max pvwβw (1 − xvw) . 
x∈X v∈VHW 

w=1 

The expression for x here does not guarantee optimality, but it can be used to guide 
control strategies by characterizing the techniques that have the most potential impact. 
However, directly solving this argmax problem is infeasible for large networks, so it cannot 
replace the numerical methods implemented below. While the simpler expressions available 
at the disease-free equilibrium provide clearly interpretable bounds on R0(x) and ∆R0(x), 
these results can be generalized to Rt(x) and ∆Rt(x) as well. 
We propose the following heuristic for the transit fow control problem in eq.(4) and as 

a subroutine in solving eq.(7): 

Algorithm 2 Heuristic for public transit fow control 

Initial SEIR model S0, E0, I0, R0, population N , and network fow r over the commute 
network. 
Compute R0(0); 
Solve fxed control problem x0 = arg max {maxv∈VHW 

P m pvwβw (1 − xvw)} and obtainx w=1 
R0(x

0). 
while |Objk+1 − Objk| < ϵ do 
Compute ∆R(xk) by (3). 
if ∆R(xk) > κ(R0(1) − R0(0)) then 

(1−α) maxv∈VHW ∪VC 
βvk+1 ← xx k − σkpC γ ; 

Update control by x ← xk+1 and calculate Objk+1 . 
end if 

end while 
return x for and the corresponding optimal value Obj. 

Proposition 2. The basic reproduction number Rt(x) < 1 for any t ∈ [0, T ] if and only if 

lim Gt(x)
k = 0. 

k→∞ 

Proposition 2 holds due to the convergence of the power series of the NGM as R0 is the 
spectral radius of NGM for any control x. This condition has valuable practical meaning 
because R0 < 1 is a central indicator that the infection cannot spread in a population. 
In summary, solving for optimal fow control policies in eq.(4) or eq.(7) is computational 

challenging because of the nonlinear disease reproduction constraints. We can leverage gen-
eral observations drawn above to improve computational efciency. Besides, these observa-
tions also have important policy implications regarding transit-relate disease control plans. 
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4. Numerical results and case study 

We validate the general rules for public transit control policies in Section 4.1 and test the 
impact of input data in Section 4.2. In Section 4.3, we present the improvement of control 
policy with monitoring feedback. To solve a case study of NYC’s subway system in Section 
4.4, we investigate the impact of network complexity to shed light on solving the problem in 
large-scale commute networks. 

4.1. Calibrating metapopulation and epidemic models 
We combine multiple sources of data to ft a realistic metapopulation SEIR model with 

transit fows and calibrate this model with the COVID-19 infection record. The details of the 
model calibration are described in Appendix D. Table 1 summarizes the epidemic model’s 
parameters from existing COVID-19 literature and the calibrated trafc fow data used in the 
rest of the numerical experiments. We consider an NYC case study because it has one of the 
world’s largest public transit systems that keeps providing essential transportation services 
during the COVID-19 pandemic. About 39% of the population in NYC use public transit 
for commuting, which is more than the population driving private cars (27%) (Tajalli and 
Hajbabaie, 2017). NYC was also one of the cities with the most COVID-19 cases in 2020. 
While the ridership of the subway witnessed a signifcant drop (Wang et al., 2021) amid the 
early stage of the epidemic, we hope to understand how a safe and efective management 
policy can help achieve a good trade-of between risk mitigation and mobility. 

Parameter 
Epidemic model 

Average contagion 
¯rate β 

Length of infectious 
period 1/γ 

Length of latent 
period δ 

Quarantine 
ratio α 

Value 
0.422 

(Prem et al., 2020) 
6.5 days 

(Yang et al., 2020) 
5.1 days 

(Lauer et al., 2020) 
0.15 

(Nishiura et al., 2020) 

Parameter 
Public transit network 

Origin-destination 
daily fow 

Subway ridership 
in pandemic 

Transit network 
transfer connectivity 

Source 
Regional MTA 
(NYC, 2020) 

NYC case study 
(Wang et al., 2021) 

MTA map 
(NYC, 2020) 

Parameter 
Spatial SEIR weights and Appendix D 
(Clewlow and Laberteaux, 2016) Constraint κ 

Hours active at home Hours in work Commute time 
Value 8 hr 8 hr 1 hr 0.5 

Table 1: Parameters and data sources for NYC case study 

We obtain the local infection rate βv as follows: 

dv¯βv = β · , ∀v ∈ V,
d̄  

¯where β is the average contagion rate reported from the city-level aggregated analysis, dv is 
¯the population density in region v and d is the average population density. 

Given the population Nv for v ∈ VHW and daily commuting fows on the home-to-work 
network, we need to determine the probability of choosing each route pvw for each v ∈ VHW 
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(a) Manhattan subway system’s average (b) Commute networks’ route fow distribu-
daily commuting fow estimation tion 

Figure 4: Case study: controlling public transit (subway) in Manhattan, NYC dueing the outbreak of 
COVID-19 in 2020. 

and w ∈ VC . We assume that each potential commuters behavior can be modeled via the 
following multinomial logit model (MNL): 

exp(ϵdw) 
pvw = P (y = w|dw) = P ,

exp(ϵdw ′ )w ′ ∈VC 

where the Manhattan distance (i.e., L1 norm distance) walking from the origin to nearest 
subway lines dw is the single explanatory variable, y is the dependent variable for route 
choice, and ϵ is a constant depending on commuters’ heterogeneity. Also, we assume that 
commuters use the same route from home to work and back (Yashima and Sasaki, 2016; 
Qian and Ukkusuri, 2021). P 
Each route’s fow w ∈ VC is pvwNv and illustrated in Figure 4a. This route v∈VHW 

choice estimation is arguably inaccurate due to the lack of accurate movement data during 
the pandemic. We enhance the accuracy of route choice model by reweighing the routing 
probabilities by the MTA subway ridership data NYC (2020). This is because trips other 
than commuting are also important components in the infectious contact in public transit. 
Section 4.2 shows that optimal control policies are insensitive to these estimation errors. 
The recurring commuting patterns and the corresponding route-specifc controls on public 

transit are necessary only if the density and the degree of the underlying commute network 
have a heavy-tailed distribution (Yashima and Sasaki, 2016). The distributional assumptionP 
is verifed as the estimated distributions of the subway fow pvwNv in Manhattan, v∈VHW 

NYC is obviously heavy-tailed in Figure 4b. 
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4.2. Aggregating commute networks and sensitivity analysis 

We conduct three types of sensitivity analysis to understand the errors caused by model 
reductions and the input data inaccuracy. These tests are conducted on a small commute 
network of Figure C.14 in Appendix C). 

• Test on route choice: A sensitivity analysis of the route choice model. 

• Test on commute network characteristics: A sensitivity analysis of network prop-
erties such as the network degree. 

• Test on epidemic model: A sensitivity analysis of the epidemic model’s parameters. 

4.2.1. Sensitivity test on route choice 
The frst sensitivity analysis assumes that residents follow a random route choice model 

with a uniform distribution in this sample network. Unlike the distance-based choice model 
in the case study, we randomize the route choice to test how the lack of movement data 
access afects the transit control policy. We evaluate the variations of both objective and 
the reproduction rate of the emerging disease when people’s route choice deviates from their 
daily routine before the epidemic. 
We simulate 1, 000 experiments and repeatedly compute the optimal controls for public 

transit fow from eq.(4). The upper bound for the total transit throughput of about 85 
depends on the sampled choice model. Note that, if there is no intervention in commute 
networks, i.e., x = 1, the disease spreads with R0 = 1.75; if the public transit is shut down, 
the disease is under control with R0 = 1.39. It is worth mentioning that the implementation 
of public transit fow controls is critical for public safety, while this policy alone is not 
sufcient for containing infectious diseases. The aim is to provide convenient mobility services 
to essential workers and others while curbing the spread of epidemics. We draw additional 
observations from this experiment: 

1. The optimal control x is small for regions with the large outfows and vice versa. 
2. The objective and optimal controls x is relatively sensitive to the uncertain route choice 
(Figure 5a) because pvw are linear coefcients in the objective. 

3. The disease reproduction constraint is also sensitive to the route choice model (Figure 
5b). 

The y-axis of Figure 5 is the probability density function, which can be greater than 
one such that the integral over the variable of interest is one. Accurate estimation of the 
route choice model is an important component of computing optimal control plans. This 
work provides what we believe to be a reasonable approximation of route choice, given the 
trade-of between model complexity and performance. However, more in-depth modeling 
of travel behavior changes during the on-peak and post-epidemic periods is worth further 
investigations. The transportation authorities should be mindful of safe and reliable frst-
and last-mile connections to public transit during the epidemic outbreak. 
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(a) Efect on maximum fow (b) Efect on basic reproduction number 

Figure 5: Sensitivity of optimal transit fow control policies with regard to the route choice probabilities. (a) 
The total transit fow is largely afected by the randomized route choice; (b) The basic production number 
is insensitive to the randomized route choice. 

Figure 6: Optimization’s running time grows with the network size 

4.2.2. Test on commute network characteristics 
We solve the fxed transit fow controls in eq.(4) and eq.(7) by nonconvex programming 

with an increasing number of regions. Figure 6 shows that the computation time grow 
sub-exponentially as the size of the problem (|x| = |VHW × VC |) increases. 
Since the large-scale problem quickly becomes unsolvable, mainly due to the nonlinearity 

of the disease reproduction constraint, we are interested in reducing the complexity of the 
underlying commute network. This step is necessary for real-world problems such as the 
NYC case study. The commuter network in this study contains 288 census tract regions and 
277 routes. Extrapolating the running time in Figure 6, computing the exact solution of the 
NYC network (|x| ≈ 80, 000) by standard nonlinear programming methods is impractical. 
For example, using the trust-region method (Byrd et al., 2000) to solve to optimally is 
expected to take 1015 − 1023 seconds on a standard computer (1.4GHz Intel i5, 8 GB RAM). 
Yashima and Sasaki (2016) identifed that the spreading rate of infectious diseases in the 

transit network is closely related to the complexity and the size of a commuter network. The 
former feature is usually measured by the maximum network degree. An arising concern is 
that the degree of this network decreases when we aggregate regions into clusters because 
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the current model assumes a fully connected commute network throughout the analysis. For 
example, when dividing the area evenly into two regions, the maximum degree of the network 
is 3, and so on. To handle such a large-scale network analysis in the NYC case study, we 
can cluster regions in VHW with similar demographic information. 
Besides, we aggregate the inter-region commuting fows between these clusters. The 

question of optimality loss due to this vertex-aggregation procedure naturally arises. In the 
following experiment, we keep the constant total expected population ∥N∥1 = 100 when 
dividing the area of interest into fner and fner grids. As a result, the degree of commute 
network (i.e., the number of connections it has to other regions) increases from 2 to 16. 
When the maximum degree of the commute network increases, the objective value of 

eq.(4) is stable, but the basic reproduction number increases signifcantly. The main reason 
is that the impact of critical regions is strengthened as the degree of network increases, and 
the basic reproduction number at optimality increases accordingly. This result supports the 
choice of relative measures on basic or efective reproduction number Rt over the absolute 
values in eq.(4) and eq.(7), respectively. In summary, the network throughput is unafected 
by scaling the networks for computational efciency, except that the control policies become 
less targeted. 

Figure 7: Sensitivity of the optimal control and the basic reproduction number regarding the commute 
network’s degree; Bars at each data point are the empirical variance from M = 100 experiments 

4.2.3. Test on epidemic model parameters 
The accuracy of the epidemic model is highly dependent on the estimated parameters 

in Table 1. However, these parameters, especially the contagion rate βv from the suscepti-
ble population St to the infected population I t, are afected by the anti-contagion policies 
(Hsiang et al., 2020) and social responsiveness (Chowdhury et al., 2020). For example, the 
transmission rate β reported in literature varies from 0.17 to 0.8 (Yang et al., 2020; Prem 
et al., 2020; Lauer et al., 2020; Wang et al., 2021) because of inaccurate data sources and 
the social distancing efect. We test the sensitivity of objective function in eq.(4) and basic 
reproduction number R0 with varying parameters from the literature. The sensitivity test 
results are reported in Figure 8. 
We draw the following observations from this sensitivity test: 

¯1. As the average contagion rate β increases due to lack of prevention strategies such as 
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¯(a) Sensitivity of average contagion rate β (b) Sensitivity of quarantine ratio α 

(c) Sensitivity of infectious period 1/γ (d) Sensitivity of latent period δ 

Figure 8: Sensitivity analysis of epidemic model parameters; Bars at each data point are the empirical 
variance from M = 100 experiments 

social-distancing, the maximum public transit fow decreases to control the transmis-
sion. On the other hand, the basic reproduction number increases substantially. 

2. As the quarantine ratio α increases, the maximum public transit fow stays approx-
imately the same while the basic reproduction number decreases substantially. An 
example of this case is when the testing rate increases and the infected population is 
identifed more efectively. 

3. As the length of the infection period 1/γ increases due to healthcare quality deterio-
ration, the maximum public transit fow decreases because of the signifcant increase 
in the basic reproduction number. 

4. The latent period’s length δ has a negligible impact on the optimal control policy or 
the disease spreading speed. 

4.2.4. Social-distancing strategy on public transit 
The contagion rate βw is reduced for all w ∈ VC when the public transit operator enforces 

stricter social-distancing policies for public transit. Such a policy can assist the control of 
the disease, as shown in Figure 9. To show the relative signifcance of implementing a social-
distancing policy in public transit, we vary the ratio of βw/β̄. As a result, the basic disease 
reproduction number is reduced. Since eq.(4) and eq.(7) use relative disease reproduction 
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constraints, the objective function is not much afected. To this end, social-distancing in 
public transit helps the public health measures and does not afect the maximal throughput 
in commute networks. 

Figure 9: Efect of social-distancing policy on public transit; Bars at each data point are the empirical 
variance from M = 100 experiments 

The value of κ in the disease reproduction constraint renders the safety-and-mobility 
trade-of. When κ increases from 0 to 1, the system puts more weight on efciency and 
less weight on safety. As shown in Figure 10, the total throughput in commute networks 
increases signifcantly with larger κ. Note that the variation of the objective is considerable 
when κ is between 0.2 − 0.6. In the case study of NYC, the same trade-of is presented in 
the subway operational plans. 

Figure 10: Safety-and-mobility trade-of; Bars at each data point are the empirical variance from M = 100 
experiments 

4.3. Numerical results for fow control with monitoring feedback 

We demonstrate the insights obtained by solving a two-stage fow policy in the same 
network. The computation of the dynamic policy in Algorithm 1 allows to iteratively simulate 
the state St and I t are dependent on x(τ), τ < t. On the other hand, the disease reproduction 
constraints need to satisfed for all τ ∈ T . 
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κ(τ) is a sequence of endogenous variables that mitigates the safety-and-mobility trade-of 
due to the evolving epidemic. As the constraint κR0(0),R0(1)(t) is dependent on the realized 
reproduction number at time t, the optimization automatically put more weights on eco-
nomics than health concerns as the severeness of the disease relieves. Suppose that we make 
an initial fow control policy at t = 0 and allow to adjust the policy at t ′ ∈ (0, T ] when 
Rt ′ (1) hits a preset threshold. To demonstrate the strictness of health measures associated 
with the basic reproduction number, we fx κ(0) = 0.5 and resolve the optimization eq (7) 
with diferent values of κRt ′ (0),Rt ′ (1)

(t ′ ). Note that, as κRt ′ (0),Rt ′ (1)
(t ′ ) increases, the second 

intervention is made earlier, and setting κ(t ′ ) ≈ 1.0 is equivalent to relaxing the disease 
reproduction constraint. 

Figure 11: The optimal control when the health measures are relaxed over time; Bars at each data point are 
the empirical variance from M = 20 experiments 

In Figure 11, the maximum fow over the public transit network increases as κRt ′ (0),Rt ′ (1)
(t ′ ) 

increases, because the health measures are more critical for the disease control at the early 
stage. In other words, setting a large threshold for a sequential transit control decision in-
crease the total throughput; thus, the transit agency’s quick responsiveness to the disease 
outbreak is valuable for social beneft. On each route and location, we also observe the 
inhomogeneous level of relieved fow in Figure C.15 in Appendix C when κ decreases or 
increases because eq.(7) automatically and efectively lifts the restrictions on transit trafc 
after the epidemic is under control. 

4.4. Safety-and-mobility trade-ofs in NYC’s reopening decisions 

Obtaining the control policy directly for complex urban infrastructure networks is com-
putationally challenging. The sensitivity tests show the small optimality gap above. Thus, 
optimizing a clustered commuter network does not infuence the generality. The census 
tracts in Manhattan, NYC, are aggregated to smaller regions based on population density 
and spatial adjacency. The spatial aggregation implements the weighted k-means clustering 
algorithm such that the number of clusters is 15 and the weights are each census tracts’ total 
population. This spatial clustering method can guarantee that the travel demand is nearly 
balanced between each region. Qian and Ukkusuri (2021) used a similar clustering technique 
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for modeling transit networks within pandemic. Given that Manhattan is a relatively small 
area and a census tract contains only a few blocks, a transit control policy at the census 
tract level is not necessary. This procedure aligns with the transit regulatory practice be-
cause more refned areas have less impact on the line-based or area-based social-distancing 
and frequency-setting policies (Kamga and Eickemeyer, 2021). These areas are labeled 0-14 
in Figure 12a). Considering commuters’ transfers, the NYC subway system contains 277 
combinations of subway lines, hence |VC | = 277 in the following analysis (transfers between 
subway lines can refer to Appendix C). 
We focus on the fxed trafc fow control policy in this case study because the early 

interventions are more critical for safety in Section 4.3. The worst case that no intervention 
on public transit (i.e., x = 1) is conducted, the basic reproduction number is R0(1) = 1.794. 
The most extreme case is a total closure of public transit (i.e., x = 0), the basic reproduction 
number is R0(0) = 1.670. The optimal control policy shown in Figure 12b obtains 88% 
(original network fow is 1.62 million) while reducing the gap of the basic reproduction rate 
at R0 = 1.703. 
Although the diference in the basic reproduction number seems small, the transit control 

strategy’s impact on mitigating transmission is signifcant. As we can see in the epidemic 
dynamics in Figure 13, the diference between the optimal control and no-control scenarios 
reaches 50, 000 for the susceptible population and 30, 000 for the infected population in 
Manhattan borough within the frst T = 100 days of the outbreak. This efectiveness of 
slowing down the spreading is signifcant, taking the short time spent in transit per day 
into account compared to the time spent at home and in the workplace. These results 
emphasize the need for controlling the disease transmission on the target region or public 
transit line during the reopening time, especially with the recurrent waves of COVID-19 
pandemic worldwide (Leung et al., 2020). 
Regarding the route-level controls in Figure 13b, we make two additional remarks on 

identifying the critical routes in transit trafc controls. 

Remark 3 (Critical regions in commute networks). In fully connected commute networks, 
the disease reproduction constraint is most sensitive to controls implemented on areas with 
largest outfow. 

Remark 4 (Route-based control). Limiting fow on a high-density route does not necessary 
control the spreading speed of the disease most efectively. 

Note that Remark 3 is consistent with the sensitivity analysis in Yashima and Sasaki 
(2016). The R0-centrality measure is defned as −∂λ0(G) , which is equivalent to the sensitivity

∂Nv 

analysis on xvw in the current work. 
Finally, the numerical results of NYC case study provide several interesting policy impli-

cations that can be generalized to other cities’ disease control plans: 

1. The numerical results confrm the general rules derived in Section 3. For example, 
the optimal subway control policy is almost uniform on each row (corresponding to a 
home-and-work vertex) in Figure 12a. The most populated outfow vertex is curtailed 
the most. 
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(a) Susceptible population N at t = 0 in 
aggregate home-and-work network VHW 

(b) Optimal public transit control x 

Figure 12: Optimal public transit control policy in NYC case study 

2. Shutting down public transit, as passengers may choose alternative modes, brings 
marginal beneft comparing to the targeted trafc control policy in this work (Figure 
13). 
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(a) Susceptible population (b) Infected population 

Figure 13: Dynamics of COVID-19 under diferent public transit control policies 

5. Conclusion 

This paper proposes a mathematical programming approach under disease reproduc-
tion constraints to resolve safety-and-mobility trade-ofs in epidemic response plans. An 
optimization-based analysis accommodates the essential demand for travel during the epi-
demic period and follows strict infectious disease safety measures. Public transit continues 
to serve as a protected, low-emission, and low-cost option for economic reopening by maxi-
mizing the transit fow restricted by the requirement of epidemic prevention measures. 
The frst main limitation of this work is that, in extreme cases, the route-target public 

transit control policy has potential accessibility and equity problems. In the case study, 
transit fows on high-risk lines are reduced between 40% and 90% due to the relative demo-
graphic homogeneity in the studied area. By either proposing new lower bounds for controls 
x or reformulating the objective to a max-min problem, we can avoid this inequality issue. 
Second, the current algorithm for the fow control with monitoring feedback is not scalable 
for large networks mainly because the coupling of the spatial SEIR model simulation and 
fow optimization leads to a heavy computational burden. Developing more efcient algo-
rithms such as simulation-optimization algorithms is a critical research direction. Finally, 
compartmental models and their integration with transit networks are suitable for modeling 
aggregate travel patterns. Various behavioral and environmental factors are not considered 
in the current setting. In order to capture the system’s uncertainty, another promising re-
search avenue is investigating more realistic models such as stochastic epidemic models and 
heterogeneous behavior models. 

6. Acknowledgements 

This material is based upon work supported by the National Science Foundation (NSF) 
under grant CMMI CIS 2033580 and the U.S. Department of Transportation’s University 
Transportation Centers Program. The authors would like to thank Juan Carlos Martinez 
Mori and Doreen Gui at Cornell University and William Barbour at Vanderbilt University 

28 



.

for their assistance and advice. The contents of this report refect the views of the authors, 
who are responsible for the facts and the accuracy of the information presented herein. This 
document is disseminated in the interest of information exchange. The report is funded, 
partially or entirely, by a grant from the U.S. Department of Transportation’s University 
Transportation Centers Program. However, the U.S. Government assumes no liability for 
the contents or use thereof. 

References 

Amekudzi-Kennedy, A., Labi, S., Woodall, B., Chester, M., Singh, P., 2020. Refections on 
pandemics, civil infrastructure and sustainable development: Five lessons from covid-19 
through the lens of transportation . 

Balcan, D., Vespignani, A., 2011. Phase transitions in contagion processes mediated by 
recurrent mobility patterns. Nature Physics 7, 581–586. 

Bhatia, R., 2007. Perturbation bounds for matrix eigenvalues. volume 53. SIAM. 

Bichara, D., Iggidr, A., 2018. Multi-patch and multi-group epidemic models: a new frame-
work. Journal of Mathematical Biology 77, 107–134. 

Byrd, R.H., Gilbert, J.C., Nocedal, J., 2000. A trust region method based on interior point 
techniques for nonlinear programming. Mathematical Programming 89, 149–185. 

Chang, S.Y., Pierson, E., Koh, P.W., Gerardin, J., Redbird, B., Grusky, D., Leskovec, 
J., 2020. Mobility network modeling explains higher sars-cov-2 infection rates 
among disadvantaged groups and informs reopening strategies. medRxiv URL: 
https://www.medrxiv.org/content/early/2020/06/17/2020.06.15.20131979, 
doi:10.1101/2020.06.15.20131979, arXiv:https://www.medrxiv.org/content/early/2020/06/17/2020.06.15.20131979.full.pdf 

Chin, A.W., Chu, J.T., Perera, M.R., Hui, K.P., Yen, H.L., Chan, M.C., Peiris, M., Poon, 
L.L., 2020. Stability of sars-cov-2 in diferent environmental conditions. The Lancet 
Microbe 1, e10. 

Chowdhury, R., Heng, K., Shawon, M.S.R., Goh, G., Okonofua, D., Ochoa-Rosales, C., 
Gonzalez-Jaramillo, V., Bhuiya, A., Reidpath, D., Prathapan, S., et al., 2020. Dynamic 
interventions to control covid-19 pandemic: a multivariate prediction modelling study 
comparing 16 worldwide countries. European Journal of Epidemiology 35, 389–399. 

Clewlow, R., Laberteaux, K., 2016. Shared-use mobility in the united states: Current 
adoption and potential impacts on travel behavior, in: 95th Annual Meeting of the Trans-
portation Research Board (TRB), Washington DC, United States. 

Cohen, J., Kupferschmidt, K., 2020. Countries test tactics in ‘war’ against covid-19. Science 
367, 1287. 

Curtis, F.E., Lubberts, Z., Robinson, D.P., 2018. Concise complexity analyses for trust 
region methods. Optimization Letters 12, 1713–1724. 

29 

https://arXiv:https://www.medrxiv.org/content/early/2020/06/17/2020.06.15.20131979.full.pdf
https://www.medrxiv.org/content/early/2020/06/17/2020.06.15.20131979


DeWeese, J., Hawa, L., Demyk, H., Davey, Z., Belikow, A., El-geneidy, A., 2020. A tale of 
40 cities: A preliminary analysis of equity impacts of covid-19 service adjustments across 
north america. Transport Findings doi:10.32866/001c.13395. 

Ding, Y., Wandelt, S., Sun, X., 2021. Tlqp: Early-stage transportation lock-down and 
quarantine problem. Transportation Research Part C: Emerging Technologies 129, 103218. 

van Dorn, A., Cooney, R.E., Sabin, M.L., 2020. Covid-19 exacerbating inequalities in the 
us. The Lancet 395, 1243–1244. 

Feng, S., Shen, C., Xia, N., Song, W., Fan, M., Cowling, B.J., 2020. Rational use of face 
masks in the covid-19 pandemic. The Lancet Respiratory Medicine 8, 434–436. 

Hensher, D.A., Balbontin, C., Beck, M.J., Wei, E., 2022. The impact of working from home 
on modal commuting choice response during covid-19: Implications for two metropolitan 
areas in australia. Transportation Research Part A: Policy and Practice 155, 179–201. 

Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger, I., Chong, T., Druckenmiller, H., 
Huang, L.Y., Hultgren, A., Krasovich, E., et al., 2020. The efect of large-scale anti-
contagion policies on the covid-19 pandemic. Nature , 1–9. 

Hu, S., Xiong, C., Yang, M., Younes, H., Luo, W., Zhang, L., 2021. A big-data driven 
approach to analyzing and modeling human mobility trend under non-pharmaceutical in-
terventions during covid-19 pandemic. Transportation Research Part C: Emerging Tech-
nologies 124, 102955. 

Hu, Y., Barbour, W., Samaranayake, S., Work, D., 2020. Impacts of covid-19 mode shift on 
road trafc. arXiv preprint arXiv:2005.01610 . 

Kamga, C., Eickemeyer, P., 2021. Slowing the spread of covid-19: Review of “social distanc-
ing” interventions deployed by public transit in the united states and canada. Transport 
Policy . 

Kamga, C., Tchamna, R., Vicuna, P., Mudigonda, S., Moghimi, B., 2021. An estimation 
of the efects of social distancing measures on transit vehicle capacity and operations. 
Transportation Research Interdisciplinary Perspectives 10, 100398. 

Keeling, M.J., Danon, L., Vernon, M.C., House, T.A., 2010. Individual identity and move-
ment networks for disease metapopulations. Proceedings of the National Academy of 
Sciences 107, 8866–8870. 

Lauer, S.A., Grantz, K.H., Bi, Q., Jones, F.K., Zheng, Q., Meredith, H.R., Azman, A.S., 
Reich, N.G., Lessler, J., 2020. The incubation period of coronavirus disease 2019 (covid-
19) from publicly reported confrmed cases: estimation and application. Annals of internal 
medicine 172, 577–582. 

Lee, S.G., Hickman, M., 2014. Trip purpose inference using automated fare collection data. 
Public Transport 6, 1–20. 

30 



.

Leung, K., Wu, J.T., Liu, D., Leung, G.M., 2020. First-wave covid-19 transmissibility and 
severity in china outside hubei after control measures, and second-wave scenario planning: 
a modelling impact assessment. The Lancet . 

Lewnard, J.A., Lo, N.C., 2020. Scientifc and ethical basis for social-distancing interventions 
against covid-19. The Lancet. Infectious Diseases . 

Lu, J., Lin, A., Jiang, C., Zhang, A., Yang, Z., 2021. Infuence of transportation network on 
transmission heterogeneity of covid-19 in china. Transportation Research Part C: Emerging 
Technologies 129, 103231. 

McLaren, J., 2021. Racial disparity in covid-19 deaths: Seeking economic roots with census 
data. The BE Journal of Economic Analysis and Policy . 

Mo, B., Feng, K., Shen, Y., Tam, C., Li, D., Yin, Y., Zhao, J., 2021. Modeling epidemic 
spreading through public transit using time-varying encounter network. Transportation 
Research Part C: Emerging Technologies 122, 102893. 

Mori, J.C.M., Barbour, W., Gui, D., Piccoli, B., Work, D., Samaranayake, S., 2020. A 
multi-region seir model with mobility. https://seir.cee.cornell.edu. 

Nishiura, H., Kobayashi, T., Miyama, T., Suzuki, A., Jung, S.m., Hayashi, K., Kinoshita, R., 
Yang, Y., Yuan, B., Akhmetzhanov, A.R., et al., 2020. Estimation of the asymptomatic 
ratio of novel coronavirus infections (covid-19). International Journal of Infectious Diseases 
94, 154. 

NYC, 2021. Covid-19 data archive. URL: https://www1.nyc.gov/site/doh/covid/covid-19-data-archive.page 
https://www1.nyc.gov/site/doh/covid/covid-19-data-archive.page. 

NYC, M., 2020. The metropolitan transportation authority of new york city. 
http://web.mta.info/mta/planning/data.html. Last accessed on July 10, 2020. 

Prem, K., Liu, Y., Russell, T.W., Kucharski, A.J., Eggo, R.M., Davies, N., Flasche, S., 
Cliford, S., Pearson, C.A., Munday, J.D., et al., 2020. The efect of control strategies to 
reduce social mixing on outcomes of the covid-19 epidemic in wuhan, china: a modelling 
study. The Lancet Public Health . 

Qian, X., Sun, L., Ukkusuri, S.V., 2021. Scaling of contact networks for epidemic spreading 
in urban transit systems. Scientifc reports 11, 1–12. 

Qian, X., Ukkusuri, S.V., 2021. Connecting urban transportation systems with the spread 
of infectious diseases: A trans-sier modeling approach. Transportation Research Part B: 
Methodological 145, 185–211. 

Tajalli, M., Hajbabaie, A., 2017. On the relationships between commuting mode choice and 
public health. Journal of Transport & Health 4, 267–277. 

31 

http://web.mta.info/mta/planning/data.html
https://www1.nyc.gov/site/doh/covid/covid-19-data-archive.page
https://www1.nyc.gov/site/doh/covid/covid-19-data-archive.page
https://seir.cee.cornell.edu


Van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, 
B.N., Tamin, A., Harcourt, J.L., Thornburg, N.J., Gerber, S.I., et al., 2020. Aerosol 
and surface stability of sars-cov-2 as compared with sars-cov-1. New England Journal of 
Medicine 382, 1564–1567. 

Wang, D., He, B.Y., Gao, J., Chow, J.Y., Ozbay, K., Iyer, S., 2021. Impact of covid-19 
behavioral inertia on reopening strategies for new york city transit. International Journal 
of Transportation Science and Technology . 

Yang, Z., Zeng, Z., Wang, K., Wong, S.S., Liang, W., Zanin, M., Liu, P., Cao, X., Gao, Z., 
Mai, Z., et al., 2020. Modifed seir and ai prediction of the epidemics trend of covid-19 in 
china under public health interventions. Journal of Thoracic Disease 12, 165. 

Yashima, K., Sasaki, A., 2016. Spotting epidemic keystones by r0 sensitivity analysis: High-
risk stations in the tokyo metropolitan area. PloS one 11, e0162406. 

32 



xx

Appendix A. Summary of notation 

Table A.2: Summary of notation 

Notation Defnition 

Spatial SEIR model 

GHW Home-and-work network consists of vertices (regions) VHW and edges EHW 

GC Public transit network consists of vertices VC and edges EC 

G Commute network integrates GHW and GC 

Nv Population in region v ∈ VHW 

N +(v) A set of neighboring outfow regions and N +(v) ⊂ VHW 

N −(v) A set of neighboring infow regions and N −(v) ⊂ VHW 

C+(v) A set of neighboring outfow and C+(v) ⊂ VC 

C−(v) A set of neighboring infow and C−(v) ⊂ VC 

N e
v (t) Efective work-home population 

Ce
v (t) Efective commuting population 

ρN Daily home-to-work fow fraction matrix with entries ruv 

ρC Transit fow fraction matrix with entries puv 

SSSt Vector of susceptible population 
EEEt Vector of exposed population 
III t Vector of infectious population 
RRRt Vector of recovered population 
βv Contact rate at vertex v ∈ V 
γ Recovering rate of the disease 
1/δ Mean latent period of the disease 
α Quarantine ratio 

Proportion of time during the day spent at home, work, and commute 
pH , pW , pC vertices, respectively 
R0 Basic reproduction number 
G0 Next generation matrix 
Rt Efective reproduction number 

Optimization model 

x 
Decision variable for static transit fow control xvw for all v ∈ VHW and 
w ∈ VC 

κ 
Tolerance for the disease reproduction constraint in the static 
control policy 

ζ, η Left and right eigenvectors associated with Rt 

τ The time period fow controls are implemented 
∆τ Time duration each control is implemented 

κRτ (0),Rτ (1)(τ ) 
Tolerance for the disease reproduction constraint in the 
control policy 
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Appendix B. Proof for the spatial compartmental model 

While it is true that the basic reproduction number for a well mixed population cannot 
be changed, we are computing R0 with the structure of the transport network taken into 
account. This is accomplished by computing the next-generation matrix and fnding its 
dominant eigenvalue. To compute the next generation matrix, we actually only care about 
the infected subsystem, the set of populations that contain infected individual consisting of 
Ev(t) and Iv(t) for all regions v ∈ V. � � � � � � � � 

dEu ∂ ∂To compute the Jacobian, we need to compute ∂ , dEu , ∂ dIu , dIu ,
∂Ev dt ∂Iv dt ∂Ev dt ∂Iv dt 

where each is evaluated at Su = Nu and Iu = 1. We collect the terms as follows: 

� � 
∂ dEv 1 

[J ]Ev Ev = = − 
∂Ev dt δ� � 
∂ dEu

[J ]EuEv = = 0 
∂Ev dt� � 
∂ dIv 1 

[J ]Iv Ev = = 
∂Ev dt δ� � 
∂ dIu

[J ]IuEv = = 0 
∂Ev dt� � 
∂ dIv

[J ]Iv Iv = = −γ 
∂Iv dt� � 
∂ dIu

[J ]IuIv = = 0 
∂Iv dt� � � � 
∂ dEv ∂ dSv

[J ]Ev Iv = = − 
∂Iv dt ∂Iv dt X ⊺Sv 2 (1 − α)Sv[ρN N ]u 

= pH βv(1 − α) + pW rvuβu ⊺Nv ([ρ N ]u)2 
u∈N +(v) N X 

2 2 (1 − α)Sv[ρC (x)
⊺C]w 

+ pC x pvw vwβw 
([ρC (x)⊺C]w)2 

w∈C+(v)� � � � 
∂ dEu ∂ dSu

[J ]EuIv = = − 
∂Iv dt ∂Iv dt X (1 − α)Sv[ρ

⊺ 
N N ]w 

= pW βwruwrvw ⊺ )2([ρN N ]w 
w∈N +(u)∩N +(v) X (1 − α)Sv[ρC (x)C]w 

+ pC βwxuwpuwxvwpvw 
([ρC (x)⊺C]w)2 

w∈C+(u)∩C+(v) 

Note there exists a disease-free equilibrium with Sv = Nv and Iv = 0 for all v ∈ V. In the 
case of fxed control, we can directly plug in these values to further simplify the computation. 
Note both F and V in dimension R2|V|×2|V| and hence we can write the NGM as: 
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


G = FV −1|>0 

pH βv(1 − α) + pWP 

 P 
u∈N +(v) r 

(B.1) 
⊺(1−α)Nv [ρ N ]u2 Nβu +

([ρN 
⊺ N ]u)2vu  2 2 (1−α)Nv [ρC (x)
⊺C]w pC x p βw , u = v, u, v ∈ V w∈C+(v) vw vw ([ρC (x)⊺C]w )2 

[F ]uv (B.2)= , 
⊺(1−α)Nv [ρN N ]wβwruwrvw ⊺ + w∈N +(u)∩N +(v)P 

P 
pW N ]w )2([ρ N 

(1−α)Nv [ρC (x)C]wβwxuwpuwxvwpvw , u ≠ v, u, v ∈ V
([ρC (x)⊺C]w)2

pC w∈C+(u)∩C+(v) 1 
δ · · · 0 0 · · · 0 
. . . 
. . . 

. . . 
. . . 
. . . 

. . . 
0 · · · 1 

δ 0 · · · 0 
1 
δ · · · 0 γ · · · 0 
. . . 
. . . 

. . . 
. . . 
. . . 

. . . 
0 · · · 1 

δ 0 · · · γ 

 

 

V (B.3)= . 

If we compute the expanded G from these expression for F and V −1 we get  

G = FV −1|>0 = 

 

0 · · · 0 1 [F ]Ev Ivγ · · · 1 [F ]EuIvγ 
. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 · · · 0 1 [F ]EuIvγ · · · 1 [F ]Ev Ivγ 

0 · · · 0 0 · · · 0 
. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 · · · 0 0 · · · 0 

 

|>0 (B.4) 

and here the nonzero submatrix is the NGM, G. We can see that: 

1 
[G]vv = [F ]Ev Iv (B.5)

γ 
1 

[G]vu = [F ]EuIv (B.6)
γ 

Appendix C. Commute networks in NYC numerical experiments 

In the sensitivity analysis, the simulations use the following commute network (|VHW | = 
4, |VC | = 6) with randomly generated population (with expected total population of 100) 
and route choice. The fow between each pair of regions u, v ∈ V are sorted from high to 
low by the home-and-work vertex index. The values are represented by the line opacity in 
Figure C.14. 
The route-based control policy for the fow control numerical experiments is shown in 

Figure C.15. The underlying commute graph is the same as in Figure C.14. The epidemic 
model’s parameters follow the NYC cast study in Table 1. We evaluate the control policy in 
this relatively small network, mainly because of the epidemic dynamic model’s computational 
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Figure C.14: Commute network for control policy validation 

(a) At t = 0 (up) with κ(0) = 0.5 and t ′ > 0 
(down) with κ(t ′ ) = 0.2. 

(b) At t = 0 (up) with κ(0) = 0.5 and t ′ > 0 
(down) with κ(t ′ ) = 0.9. 

Figure C.15: Optimal transit fow control x ∗(t) with diferent strictness of health measures 

limitation. Since we are interested in the potential of the policy with monitoring feedback 
compared to the fxed policy in this experiment, the derived results are general. 
The connectivity of the subway system is required for constructing the commute network 

in the NYC case study. Considering only the individual physical transit lines are not an 
appropriate vertex representation in the commuter network. Infected passengers may transfer 
between lines in a single trip and cause contagion on all visited lines. By limiting the number 
of transfers to one, we can crawl the public transit data NYC (2020) to reconstruct the 
commute network transfer graph as in Figure C.16. Each edge connecting two subway lines 
are treated as a vertex w ∈ VC . 
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Figure C.16: Connectivity of the MTA subway systems in NYC; Each edge in the graph is v ∈ VC in the 
commute network 

Appendix D. Calibration of Spatial SEIR model in the study area 

We have calibrated the compartmental model using the newly collected data from NYC 
from April 10, 2020 to March 1, 2021 NYC (2021). Notice that the recovered population has 
been considered at the beginning of the ftting. In Figure 1, the rates of infectious population 
I(t)/N of diferent areas have similar patterns, and the disturbance is mainly because of the 
weekly This validation considers the parameters of contagion rate β and length of infectious 
period 1/γ may vary, so we estimate these parameters across all areas of diferent zip codes. 
The value of γ is close to the previous parameter, while the contagion rate has large variations 
in the past months. Therefore, we use new β in this revision assuming that the length of 
latent and infectious periods are constant. 

(a) Ratio of infected population (b) SEIR model parameters 

Figure D.17: Confrmed COVID-19 cases reported by zip code in New York City, NY from April 2020 to 
March 2021. 
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